Big Data: как применять и анализировать большие данные?

Big Data: как применять и анализировать большие данные?

Big Data - это большие массивы информации, которые часто бывают неупорядоченными. Технологии работы с такими данными известны как Big Data технологии. Это направление в IT является одним из самых популярных в настоящее время. И это не удивительно. Приложение технологий Big Data открывает новые возможности для развития бизнеса, а также предоставляет клиентам персонифицированные продукты и сервисы.

В данной статье мы рассмотрим технологии анализа больших данных и объясним, как их использование может пригодиться в бизнесе.

Влияние больших данных на науку и бизнес

3 сентября 2008 года в журнале Nature был выпущен специальный номер, посвященный влиянию огромных массивов информации на развитие науки. Так появился термин Big Data. С того момента прошло несколько лет, и стало ясно, что аналитика больших данных актуальна для любой отрасли.

Объемы данных возрастают экспоненциально, при этом традиционные методы и инструменты становятся неэффективными. Рост количества информации произошел благодаря развитию информационных технологий и расширению возможностей вычислительной техники. Помимо интернета (социальные сети, сайты, интернет-магазины, форумы, СМИ), данные поступают с мобильных устройств, измерительных приборов, метеостанций, аудио- и видеорегистраторов, корпоративных систем, их источники постоянно растут. Каждый день объем данных продолжает увеличиваться.

Для хранения, обработки и анализа такого огромного объема информации требуются специальные алгоритмы и программные средства. Они также входят в понятие Big Data. Данная технология нашла применение во многих сферах, включая медицину, банковское дело, страхование, маркетинг, рекламу и другие. Так, большие данные используются для создания персонализированных рекомендаций, предотвращения кибератак и мошенничества, определения тенденций в медицине и других отраслях.

Анализ методов хранения данных

В современном мире большие объемы данных являются незаменимыми ресурсами, однако их использование может оказаться неэффективным, если они не будут обработаны и соответственно использованы. Для обработки больших данных используются методы, которые состоят из нескольких этапов. Первым шагом является сбор информации из различных источников, включая серверы, базы данных и другие устройства. Далее следует обеспечить их хранение, обработку и защиту от потери.

В настоящее время для хранения данных используются как собственные вычислительные ресурсы, так и облачные решения. Тем не менее, использование собственных ресурсов может привести к проблеме масштабирования, а также к дополнительным расходам на поддержание и обновление оборудования. При этом, в периоды пиковых нагрузок, физический сервер может выйти из строя, при этом перестраховка приводит к неоправданным расходам.

Использование облачных решений для хранения данных позволяет избежать данных проблем и обеспечивает быстрое масштабирование и резервирование вычислительных ресурсов. В облачных решениях есть возможность быстро увеличить объем информации, а также обеспечить надежность, отказоустойчивость и гибкую настройку. Таким образом, каждый индивидуальный подход должен быть оценен в соответствии со спецификой бизнес-задач, требующих обработки данных.

Ключевой этап работы с большими данными - анализ. Это именно тот этап, благодаря которому Big Data начинает приносить реальную пользу в бизнесе. Он позволяет отфильтровать не нужную информацию и выделить все самое ценное.

Существует множество методов анализа больших данных, описать их все в рамках одной статьи невозможно, поэтому мы рассмотрим основные из них.

Обработка данных перед анализом

Один из важнейших этапов работы с большими объемами данных, это их предварительная обработка. Она включает в себя методы приведения разнородных данных к единому виду, дополнения отсутствующих данных и очистку от ненужной информации. Подготовительная обработка данных выполняется перед началом анализа и играет важную роль в получении качественных результатов.

Data Mining: извлечение полезной информации из разнородного массива

Data Mining - это метод, который позволяет извлекать полезные закономерности из различных источников информации. Суть метода заключается в том, что он позволяет выявить связи и зависимости, которые не видны на первый взгляд.

В рамках этого метода решаются задачи по классификации, кластеризации и анализу отклонений. Классификация позволяет определить принадлежность объекта к определенному классу, кластеризация - объединение объектов в группы в зависимости от степени их сходства, а анализ отклонений помогает выявлять аномалии и выбросы.

Таким образом, Data Mining является эффективным методом для извлечения полезной информации из различных источников и может применяться в различных областях, где необходимо обрабатывать большие объёмы данных.

Нейронные сети – это особый тип алгоритмов машинного обучения, который напоминает работу человеческого мозга. Они способны анализировать входные данные и выдавать требуемый результат. Применение умных нейросетей достаточно широко: они могут распознавать лица на фотографиях, а также определять недобросовестные транзакции на основе ряда признаков.

Прогнозирование будущих событий – это важный инструмент в современном бизнесе. С помощью метода прогностического анализа можно предсказать множество различных вещей, таких как поведение клиентов, динамику продаж, финансовые показатели организации, курсы валют, сроки доставки товаров, а также ремонтопригодность оборудования и многое другое.

Основная суть метода заключается в использовании данных из прошлого для прогнозирования будущих событий. Аналитики выявляют параметры, которые в наибольшей степени влияют на результат, и на основе их анализа, делают предположения о том, что может произойти в будущем.

Прогностический анализ применяется в многих сферах бизнеса и стал незаменимым инструментом планирования и принятия решений. Правильно использованный метод позволяет предугадать различные риски и возможности, что создает преимущество в условиях жесткой конкуренции на рынке.

За счет применения Big Data анализ статистики значительно уточняется. Важно, чтобы выборка данных была максимально представительной, в этом случае результаты анализа будут более точными и достоверными.

Визуализация является ключевым этапом в анализе данных, так как она позволяет представить информацию в удобном и понятном формате для пользователя. Этот процесс может включать в себя создание графиков, карт, схем, диаграмм и гистограмм.

Для достижения успешного результата визуализации используются специальные инструменты Big Data, которые позволяют обрабатывать и анализировать большие объемы данных.

Количество информации, сгенерированной пользователями, увеличивается с каждым годом. Примерно за 2020 год они сгенерировали почти 60 зеттабайт (около 60 × 10 21 байт) данных, а к 2025 году прогнозируется утроение этих цифр. Поэтому анализ Big Data является перспективным технологическим направлением, на которое вкладываются большие деньги крупных компаний. Большие данные актуальны и для бизнеса, и для науки, и для сферы государственного управления.

Какие характеристики определяют Big Data как информацию?

Big Data - это данные, которые отличаются тремя основными свойствами, называемыми "тремя V":

Объем (Volume): Это означает, что данные должны быть в большом количестве. Эти данные уже измеряются не терабайтами, а петабайтами и эксабайтами.

Скорость (Velocity): Большие данные поступают непрерывно из разных источников, и этот процесс происходит очень быстро.

Разнообразие (Variety): Big Data - это информация разных типов, включая текстовые и графические документы, аудио- и видеофайлы, а также логи. Она может быть совсем неструктурированной или упорядоченной частично.

С ростом востребованности направления в последние годы к "трем V" были добавлены еще два признака: достоверность (Veracity) и ценность (Value). Это означает, что данные должны быть точными и приносить пользу бизнесу. Иногда выделяют еще жизнеспособность (Viability).

Каковы плюсы использования Big Data?

Применение технологии анализа больших данных дает возможность оптимизировать бизнес-процессы, повысить производительность, улучшить качество товаров и услуг, минимизировать риски, предвидеть тенденции рынка, а также получить глубокое понимание поведения клиентов, их потребностей и интересов для более точного попадания в целевую аудиторию. К примеру, большим сферам применения Технологии Big Data были телекоммуникационные компании, банковская и розничная отрасли. Применение Big Data позволяет повысить экологические характеристики и энергоэффективность в производстве. Для продавцов это выгодно, а для покупателей - удобно.

В настоящее время технологии хранения и анализа больших данных практически неизбежны и востребованы не только в торговле, рекламе и индустрии развлечений, но и в различных сферах деятельности, включая безопасность, медицину, сельское хозяйство, промышленность, энергетику, науку и государственное управление.

Рассмотрим несколько примеров практического применения больших данных, которые имеют актуальность в разных отраслях деятельности.

Внедрение новых технологий

Технологические компании используют возможности анализа Big Data для создания интеллектуальных продуктов и сервисов, которые способны решать принципиально новые задачи. Одним из примеров таких продуктов является платформа «вычислительной биологии», разработанная в США. Эта платформа предлагает возможность видеть взаимодействие химических веществ с сигнальными рецепторами клеток организма. Благодаря инструментам Big Data, настоящая революция в фармакологии уже не за горами: платформа позволит находить и создавать лекарственные препараты, которые точно попадают в цель.

Анализ больших данных уже используется в медицинских исследованиях для ускорения и повышения точности результатов. На конференции DUMP, которая проходила в Уральском регионе, были представлены данные об использовании Big Data в медицинских исследованиях. Использование новой технологии в ходе цикличного медицинского тестирования выявило погрешность в 20% по сравнению с неавтоматизированными измерениями.

В Европе использование анализа больших данных в медицине более распространено. Исследования в этой области показали, что некоторые генетические факторы могут быть связаны с заболеваемостью раком. Была проанализирована информация на 150 000 пациентов, и выявлены факторы риска возникновения заболевания.

Внедрение новых технологий в медицину позволяет значительно повысить эффективность медицинских исследований и медицинской практики в целом.

Изучение поведения клиентов

В настоящее время маркетологи активно используют большие данные для оптимизации эффективности рекламной кампании. Данные анализируются из истории покупок, поиска, посещений и лайков в социальных сетях для определения предпочтений пользователей. Это позволяет предлагать клиентам только самые подходящие предложения, сделав рекламу более адресной и эффективной, благодаря Big Data.

Одним из первооткрывателей в этой области стал известный маркетплейс Amazon. В системе рекомендаций учитывались не только история покупок и анализ поведения клиентов, но и внешние факторы, такие как сезон и предстоящие праздники. В результате система рекомендаций Amazon стала ответственной за более чем треть всех продаж.

Статья рассказывает о том, как банки используют большие данные для обеспечения безопасности транзакций и предотвращения мошенничества. Специалисты используют Big Data и машинное обучение, чтобы разработать модели поведения добросовестных пользователей. Таким образом, любое отклонение от нормального поведения вызывает сигнал тревоги для службы безопасности.

Один из ярких примеров – это Сбербанк. Система сравнения фотографий клиентов, полученных с помощью веб-камеры, с изображениями из базы, была внедрена еще в 2014 году. Благодаря этой системе точность идентификации была улучшена, а случаи мошенничества уменьшились в десять раз.

Таким образом, инструменты, основанные на Big Data и машинном обучении, позволяют банкам повысить уровень безопасности транзакций и защитить персональные данные клиентов от мошенников.

Внедрение новых технологий и интеллектуальных систем сбора и анализа данных позволяет больше не ограничиваться реактивными мерами по устранению простоев и сокращению производительности, а применять проактивный подход, предотвращая возможные поломки и исключая из процесса неэффективные операции.

Так, аэропорт «Пулково» в 2020 году внедрил интеллектуальную платформу на основе больших данных, которая автоматизировала работу служб компании и сделала управление предприятием более прозрачным и эффективным. Данные теперь можно оперативно получать по любым текущим процессам, что повышает качество работы предприятия. Новая платформа также упрощает сотрудничество аэропорта с авиакомпаниями, оптимизирует планирование ресурсов, в том числе, при выполнении технического обслуживания и ремонта терминалов.

Ожидается, что применение этой платформы под названием «умный сервис» улучшит техническое состояние оборудования и общую оборачиваемость запасов на 10%, а уровень сервиса поставщиков на 20%. Теперь производственные процессы в «Пулково» стали еще более эффективными и оптимальными. Инновационные технологии и интеллектуальные системы мониторинга позволяют оптимизировать производственные процессы и решать задачи с высокой точностью.

Прогнозирование на основе больших данных

При использовании больших данных возможно строить прогнозные модели, выявлять закономерности и предугадывать поведение людей и процессов в будущем. Примером могут служить прогнозы спроса на товары и услуги, успешность рекламных кампаний и эффективность взаимодействия с клиентами. Также прогнозные модели могут применяться в различных отраслях, включая образование для предположений о будущей успеваемости учащихся и эффективности программ.

Прогнозная аналитика на основе больших данных широко используется в авиации. Компания Airbus, например, планирует минимизировать количество случаев, когда самолет не выполняет полет из-за выявленной неисправности, благодаря предиктивному обслуживанию к 2025 году. Компания Lufthansa Technik уже внедряет платформу, которая предсказывает сроки замены деталей самолета.

Консалтинговая компания Accenture провела исследование в 2014 году, в рамках которого руководители тысячи компаний из разных стран мира были опрошены. Больше половины (60%) из опрошенных компаний на тот момент успешно внедрили системы анализа больших данных и были довольны полученными результатами. Участники исследования назвали несколько преимуществ использования Big Data, включая создание новых продуктов и услуг, увеличение и разнообразие источников доходов, повышение уровня удовлетворенности клиентов и улучшение клиентского опыта. Источник - https://www.tadviser.ru/.

Фото: freepik.com

Комментарии (0)

Добавить комментарий

Ваш email не публикуется. Обязательные поля отмечены *